
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Autonomous Institution – UGC, Govt. of India

Department of CSE
 (Artificial Intelligence and Machine Learning)

B. TECH (R-24 Regulation)
 (II YEAR – I SEM)

2025-26
COMPUTER ORGANIZATION AND ARCHITECTURE

(R24A0561)

LECTURE NOTES

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12(B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad–500100, Telangana State, India

 Department of Computer Science and Engineering

(Artificial Intelligence and Machine Learning)

Vision

To be a premier center for academic excellence and research through innovative

interdisciplinary collaborations and making significant contributions to the community,

organizations, and society as a whole.

Mission

 To impart cutting-edge Artificial Intelligence technology in accordance with industry

norms.

 To instil in students a desire to conduct research in order to tackle challenging technical

problems for industry by sustaining the ethical values.

 To develop effective graduates who are responsible for their professional growth,

leadership qualities and are committed to lifelong learning.

QUALITY POLICY

 To provide sophisticated technical infrastructure and to inspire students to reach their

full potential.

 To provide students with a solid academic and research environment for a

comprehensive learning experience.

 To provide research development, consulting, testing, and customized training to

satisfy specific industrial demands, thereby encouraging self-employment and

entrepreneurship among students.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II year B.Tech. CSE-I Sem L/T/P/C

3/1/0/4

(R24A0561) COMPUTER ORGANIZATION AND ARCHITECTURE

COURSE OBJECTIVES:

 Course Objectives

● The purpose of the course is to introduce principles of computer organization and the basic

architectural concepts.

● It begins with basic organization, design, and programming of a simple digital computer and

introduces simple register transfer language to specify various computer operations.

● Topics include computer arithmetic, instruction set design, microprogrammed control unit,

pipelining and vector processing, memory organization and I/O systems, and multiprocessors

 UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer

Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer,

Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro

operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer

instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output

and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design

of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes,

Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point

Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms,

Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT – IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer,

Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory,

Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction

Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Inter processor

arbitration, Inter processor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:
1. Computer Organization – Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw

Hill.

2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.

3. Structured Computer Organization – Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

COURSE OUTCOMES:

● Understand the basics of instruction sets and their impact on processor design.

● Demonstrate an understanding of the design of the functional units of a digital computer system.

● Evaluate cost performance and design trade-offs in designing and constructing a computer

processor including memory.

● Design a pipeline for consistent execution of instructions with minimum hazards. Recognize and

manipulate representations of numbers stored in digital computers

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE (Artificial Intelligence and Machine Learning)

INDEX

S.No Unit Topic P. No

1 I Introduction to big data: Data, Characteristics of data

2 I

Digital Computers: Introduction, Block diagram of Digital Computer,

Definition of Computer Organization, Computer Design and Computer

Architecture.

1

3 I

Register Transfer Language and Micro operations: Register Transfer

language, Register Transfer, Bus and memory transfers, Arithmetic Micro

operations, logic micro operations, shift micro operations, Arithmetic logic

shift unit.

3

4 I
Basic Computer Organization and Design: Instruction codes, Computer

Registers Computer instructions, Timing and Control, Instruction cycle,

Memory Reference Instructions, Input – Output and Interrupt

5

5 II

Microprogrammed Control: Control memory, Address sequencing, micro
program example, design of control unit..

9

6 II
Central Processing Unit: General Register Organization, Instruction
Formats, Addressing modes, DataTransfer and Manipulation, Program
Control

15

7 III

Data Representation: Data types, Complements, Fixed Point

Representation, Floating Point Representation.
33

8 III

Computer Arithmetic: Addition and subtraction, multiplication

Algorithms, Division Algorithms
44

9 III

Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal
Arithmetic operations.

52

10 IV
Input-Output Organization: Input-Output Interface, Asynchronous data

transfer, Modes of Transfer,Priority Interrupt Direct memory Access.

55

11 IV

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary

memory, Associate Memory, CacheMemory
61

12

V

Reduced Instruction Set Computer: CISC Characteristics, RISC

Characteristics.

63

13

V

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic

Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array

Processor.

64

14 V

Multi Processors: Characteristics of Multiprocessors, Interconnection

Structures, Inter processor arbitration, Inter processor communication and

synchronization, Cache Coherence.

77

1

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer

Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register

Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift

micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer

instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output

and Interrupt.

The functional components of a digital computer include the Input Unit, which takes in

data; the CPU, which processes data with its Control Unit (CU), Arithmetic Logic Unit

(ALU), and Registers; the Memory Unit, which stores data temporarily (RAM) or

permanently (HDD/SSD); the Output Unit, which displays results; and the Bus System,

which connects and transfers data between components. These parts work together to execute

tasks and provide results.

The functional components of a computer are the key parts that work together to process and

manage data. These include the Input Unit for receiving data, the CPU for processing it,

the Memory Unit for storing information, the Output Unit for displaying results, and the Bus

System that connects all parts. These components help the computer perform tasks efficiently.

2

1. Input Unit

 Purpose: Captures data and instructions from users or external sources.

 Function: Converts user input into binary signals that the computer can process.

 Common Devices (2025):

o Keyboard, Mouse, Touchscreens

o Scanners, Sensors, Stylus pens

o Voice Assistants (e.g., Siri, Alexa)

o Biometric devices (face/fingerprint recognition)

o Iot-based inputs from smart devices

2. Central Processing Unit (CPU) – The Brain of the Computer

The CPU executes instructions and controls all internal operations. In 2025, CPUs will often

have multiple cores and threads to handle parallel processing efficiently.

Components of CPU:

a. Arithmetic Logic Unit (ALU)

 Performs arithmetic operations (add, subtract, multiply, divide).

 Handles logical operations (comparison, decision-making).

 Supports AI/ML tasks using built-in vector/matrix operations (in modern CPUs).

b. Control Unit (CU)

 Directs the operations of all computer parts.

 Decodes instructions and coordinates data flow.

 Sends control signals to memory and I/O devices.

c. Registers

 High-speed memory locations within the CPU.

 Temporarily store instructions, addresses, and intermediate data.

 Examples: Accumulator, Instruction Register, Program Counter, Address Register.

 Modern CPUs include 64-bit or even 128-bit registers for faster processing.

3. Memory / Storage Unit

The memory unit holds data and instructions before, during, and after processing.

a. Primary Memory (Main Memory):

 RAM (Random Access Memory): Temporarily stores data during execution.

o Types in 2025: DDR5, LPDDR5X, and emerging MRAM.

 ROM (Read-Only Memory): Stores boot-up instructions and firmware.

 Cache Memory: Ultra-fast memory between CPU and RAM (L1, L2, L3 levels).

b. Secondary Storage:

 Used for long-term data storage.

 Examples: SSDs (NVMe drives), HDDs, flash drives, and cloud storage.

 Modern Trend: Use of Cloud Integration and hybrid storage models.

4. Output Unit

 Purpose: Converts processed data (binary) into a form users can understand.

 Examples:

o Visual: Monitors (LED, OLED, 4K/8K displays)

o Print: Printers (Inkjet, Laser, 3D Printers)

o Audio: Speakers, Headphones

o Haptic: Vibration feedback devices

Computer Organization and Architecture is used to design computer systems.

 Computer architecture is about designing a computer system to balance performance,

efficiency, cost, and reliability. It describes how a system is built from its components. This

can be a high-level overview or a detailed explanation, including the instruction set

architecture, micro architecture, logic design, and implementation.

3

 Computer Organization is about how the components of a computer system, like the CPU,

memory, and input/output devices, are connected and work together to execute programs. It

focuses on the operational aspects and how hardware components are implemented to

support the architecture.

Register Transfer Language (RTL):

Register Transfer Language (RTL) is a low-level language that is used to describe the

functioning of a digital circuit and, more specifically, the transfer of information between

registers. It provides how data moves from one register to the other and how data is processed

within the digital system. Through RTL, there is a capability of creating abstraction levels where

high-level design descriptions can be created and easily linked to low-level hardware

implementation in designing, simulating, as well as synthesizing digital circuits.

Register Transfer Operations

The operation performed on the data stored in the registers are referred to as register transfer

operations.

There are different types of register transfer operations:

1. Simple Transfer - R2 <- R1
 The content of R1 are copied into R2 without affecting the content of R1. It is an

unconditional type of transfer operation.

2. Conditional Transfer

It indicates that if P=1, then the content of R1 is transferred to R2. It is a unidirectional

operation.

3. Simultaneous Operations -

If 2 or more operations are to occur simultaneously then they are separated with comma (,).

If the control function P=1, then load the content of R1 into R2 and at the same clock load the

content of R2 into R1.

Advantages of Register Transfer Language (RTL)

 Enables efficient hardware design.

 This makes it possible to simulate some activities and perhaps detect some errors at an

early date.

 Implements conceptual description up to the gate-level hardware.

 It helps to reuse the design components.

 It gives a clear guide on how to do timing analysis on a given design.

In basic computer organization, an instruction is a binary code that tells the computer what

operation to perform and where to find the data. It's a fundamental unit of a program,

specifying the actions the CPU must execute. The instruction cycle, also known as the fetch-

decode-execute cycle, is the process by which the CPU handles each instruction.

Elaboration:

 Instruction Structure:

https://www.geeksforgeeks.org/rtl-register-transfer-level-design-vs-sequential-logic-design/

4

A basic instruction typically consists of an opcode (operation code) and an address

field. The opcode specifies the operation to be performed (e.g., add, subtract, load,

store). The address field indicates the location of the data or the next instruction.

 Instruction Cycle:

The instruction cycle involves several steps:

1. Fetch: The CPU retrieves the instruction from memory using the program counter.

2. Decode: The CPU interprets the opcode and determines the necessary actions.

3. Execute: The CPU performs the specified operation, which may involve reading or

writing data from memory, using the ALU, and updating registers.

 Instruction Types:

 Memory-reference instructions: These instructions operate on data stored in memory,

including addressing modes like direct and indirect addressing.

 Register-reference instructions: These instructions operate on data stored in processor

registers, such as the accumulator.

 Input/output instructions: These instructions control the transfer of data between the

computer and external devices.

Instruction Set Architecture (ISA):

The ISA defines the set of instructions that a CPU can execute. It essentially acts as an

interface between the hardware and software, specifying what the processor can do and

how it does it.

Stored Program Concept:

The computer stores both instructions and data in memory, allowing for flexible program

execution and re-usability.

https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=opcode&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQIERAB&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3
https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=address+field&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQIERAC&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3
https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=address+field&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQIERAC&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3
https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=Instruction+Cycle&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQIEhAB&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3
https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=program+counter&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQINxAB&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3
https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=ALU&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQIOhAB&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3
https://www.google.com/search?cs=0&sca_esv=126bc4ae6ee860b7&sxsrf=AE3TifMIECAOZdLMjj9T0GLYbILU_D1qsg%3A1749619876553&q=Instruction+Types&sa=X&ved=2ahUKEwj95K350eiNAxXRRmcHHcuwBz0QxccNegQIFBAC&mstk=AUtExfBe88dL3o1kyUk-rGX4eLauEsrMFqkbUBJVXNrJJzW55JIyXCACZGKIpncEDg-TX9qz4oBxs8hAQYa68vR1yIs3fA5RT8rGYkmdtYUvgk1Sqsc7VD39ujAO0XK0HjubJMoxNSy2TQqZPzwfAuQa3rphfIgH3DzuGYsdgbAJ7qnvPfw&csui=3

5

Basics of Computer Organization and Design -

In basic computer organization, an instruction is a binary code that tells the computer what

operation to perform and where to find the data. It's a fundamental unit of a program, specifying the

actions the CPU must execute. The instruction cycle, also known as the fetch-decode-execute cycle,

is the process by which the CPU l

Computer Organization is about how the components of a computer system, like the CPU,

memory, and input/output devices, are connected and work together to execute programs. It

focuses on the operational aspects and how hardware components are implemented to support

the architecture.

A computer instruction is a binary code that determines the micro-operations in a sequence for a

computer. They are saved in the memory along with the information. Each computer has its specific

group of instructions.

They can be categorized into two elements as Operation codes (Opcodes) and Address. Opcodes

specify the operation for specific instructions. An address determines the registers or the areas that

can be used for that operation. Operands are definite elements of computer instruction that show

what information is to be operated on.

It consists of 12 bits of memory that are required to define the address as the memory includes 4096

words. The 15th bit of the instruction determines the addressing mode (where direct addressing

corresponds to 0, indirect addressing corresponds to 1). Therefore, the instruction format includes

12 bits of address and 1 bit for the addressing mode, 3 bits are left for Opcodes.

The following block diagram shows the instruction format for a basic computer.

https://www.tutorialspoint.com/what-are-computer-instructions

6

A program consisting of the memory unit of the computer includes a series of instructions. The

program is implemented on the computer by going through a cycle for each instruction.

In the basic computer, each instruction cycle includes the following procedures −

 It can fetch instruction from memory.

 It is used to decode the instruction.

 It can read the effective address from memory if the instruction has an indirect address.

 It can execute the instruction.

After the following four procedures are done, the control switches back to the first step and repeats

the similar process for the next instruction. Therefore, the cycle continues until a Halt condition is

met. The figure shows the phases contained in the instruction cycle.

Fetch Cycle

The address instruction to be implemented is held at the program counter. The processor fetches the

instruction from the memory that is pointed by the PC.

Next, the PC is incremented to display the address of the next instruction. This instruction is loaded

onto the instruction register. The processor reads the instruction and executes the important

procedures.

https://www.tutorialspoint.com/computer_fundamentals/computer_memory_units.htm

7

Execute Cycle

The data transfer for implementation takes place in two methods are as follows −

 Processor-memory − The data sent from the processor to memory or from memory to

processor.

 Processor-Input/Output − The data can be transferred to or from a peripheral device by the

transfer between a processor and an I/O device.

In the execute cycle, the processor implements the important operations on the information, and

consistently the control calls for the modification in the sequence of data implementation. These

two methods associate and complete the execute cycle.

Memory Reference Instructions:

Memory Reference Instructions are instructions that involve accessing main memory for either

fetching operands or storing results, typically using an address field in the instruction.

There are seven memory reference instructions which are as follows &

AND

The AND instruction implements the AND logic operation on the bit collection from the register

and the memory word that is determined by the effective address. The result of this operation is

moved back to the register.

ADD

The ADD instruction adds the content of the memory word that is denoted by the effective address

to the value of the register.

LDA

The LDA instruction shares the memory word denoted by the effective address to the register.

STA

STA saves the content of the register into the memory word that is defined by the effective address.

The output is next used to the common bus and the data input is linked to the bus. It needed only

one micro-operation.

BUN

The Branch Unconditionally (BUN) instruction can send the instruction that is determined by the

effective address. They understand that the address of the next instruction to be performed is held

by the PC and it should be incremented by one to receive the address of the next instruction in the

sequence. If the control needs to implement multiple instructions that are not next in the sequence, it

can execute the BUN instruction.

BSA

BSA stands for Branch and Save return Address. These instructions can branch a part of the

program (known as subroutine or procedure). When this instruction is performed, BSA will store

the address of the next instruction from the PC into a memory location that is determined by the

effective address.

8

ISZ

The Increment if Zero (ISZ) instruction increments the word determined by effective address. If the

incremented cost is zero, thus PC is incremented by 1. A negative value is saved in the memory

word through the programmer. It can influence the zero value after getting incremented repeatedly.

Thus, the PC is incremented and the next instruction is skipped.

9

UNIT - II

Micro programmed Control: Control memory, Address sequencing, micro

program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats,

Addressing modes, Data Transfer and Manipulation, Program Control.

A control memory is a part of the control unit. Any computer that involves micro

programmed control consists of two memories. They are the main memory and the

control memory. Programs are usually stored in the main memory by the users.

Whenever the programs change, the data is also modified in the main memory. They

consist of machine instructions and data.

The control memory consists of micro programs that are fixed and cannot be modified

frequently. They contain microinstructions that specify the internal control signals

required to execute register micro-operations.

The machine instructions generate a chain of microinstructions in the control memory.

Their function is to generate micro-operations that can fetch instructions from the main

memory, compute the effective address, execute the operation, and return control to

fetch phase and continue the cycle.

Here, the control is presumed to be a Read-Only Memory (ROM), where all the control

information is stored permanently. ROM provides the address of the microinstruction.

The other register, that is, the control data register stores the microinstruction that is read

from the memory. It consists of a control word that holds one or more micro-operations

for the data processor.

The next address must be computed once this operation is completed. It is computed in

the next address generator. Then, it is sent to the control address register to be read. The

next address generator is also known as the microprogram sequencer. Based on the

inputs to a sequencer, it determines the address of the next microinstruction. The

microinstructions can be specified in several ways.

10

The main functions of a microprogram sequencer are as follows −

 It can increment the control register by one.

 It can load the address from the control memory to the control address register.

 It can transfer an external address or load an initial address to begin the start

operation.

The data register is also known as the pipeline register. It allows two operations to be

performed at a time. It allows performing the micro-operation specified by the control

word and also the generation of the next microinstruction.

A dual-phase clock is required to be applied to the address register and the data register.

It is possible to apply a single-phase clock to the address register and work without the

control data register.

The main advantage of using a microprogrammed control is that, if the hardware

configuration is established once, no further changes can be done. However, if a

different control sequence is to be implemented, a new set of microinstructions for the

system must be developed.

The address sequencing can be done in 4 ways.

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control

memory.

4. A facility for subroutine call and return.

13. Explain the role of microprogram Example ?

A micro program is a collection of microinstructions that tells a microprocessor how to perform

operations. Micro programs are stored in control memories and can be used to customize and

enhance the functionality of a CPU.

• In micro programming we have 5 sub topics

• 1) Computer Configuration

• 2) Micro Instruction format

• 3) Symbolic Micro instruction

• 4) Symbolic Micro Program

5) Binary Micro program

11

MICROPROGRAM EXAMPLE

4

Computer Configuration

MUX

AR

10 0

PC

10 0

Address Memory

2048 x 16

MUX

DR
15 0

Arithmetic
logic and
shift unit

AC

15 0

SBR

6 0

CAR

6 0

Control memory

128 x 20

Control unit

This contains two memories Units

1. Main Memory

2. Control Memory

Main Memory: This is used to store instructions and data.
The capacity of Main Memory is 2048 x 16.

It contains 2048 words , each word size is of 16 bits each.

11 bits are required to identify Address of each location.

Control Memory: used to store Micro program which is
nothing but sequence of instructions .

The capacity of Main Memory is 128 x 20. each word is 20
bits and 07 bits are required to identify address of each
location

5

12

• Control Memory is associated with CAR and SBR.

• CAR: Control Address Register : It provides the
address of the micro instructions which are
present in the control memory. The size of CAR is
7 bits.

• SBR : Sub Routine Register : when ever a
subroutine called in the program the control
transfers from main program to sub routine
program , once those instructions are completed
the control come back to the address which is
specified by SBR . SBR contains return address.

6

• Here we have two multiplexers

• MUX -1 have two inputs from PC and DR and
one output which goes to AR.

• MUX -2 have three inputs from PC , DR and
main memory one output which goes to DR.

• Among these 4 registers two registers are
associated for address(AR & PC), two registers
are associated for data(DR & AC)

7

13

• AR-Address Register: It provides the address
of the instructions that are stored in main
memory. 11 bits. It is receiving information
from Pc as well as DR through MUX-1

• PC: Program Counter always points the next
instruction to be fetched. 11 bits. It is
receiving information only from AR.

8

• DR: Data Register contains the data. 16 bits. It
is receiving information from AC, DR and main
memory through MUX-2

• AC: Accumulator : It contains the operands
and the result. 16 bits. It is receiving
information only from ALU.

• ALU is receiving information only from DR.

• Among these 4 registers two registers are
associated for address(AR & PC), two registers
are associated for data(DR & AC)

9

• Read Operation: If we want to perform read
information from particular location which is
present in main memory . We required
address that provided by AR go to that
location from that location read the data and
send to the DR.

• Write Operation: DR provides data . That data
to be write in memory location specified by
the AR.

• Micro programmed unit provides control
signals

10

Main Memory Operations:

14

11

MACHINE INSTRUCTION FORMAT

MICROINSTRUCTION FIELD DESCRIPTIONS - F1,F2,F3

12

F1 Microoperation Symbol

000 None NOP

001 AC AC + DR ADD

010 AC 0 CLRAC

011 AC AC + 1 INCAC

100 AC DR DRTAC

101 AR DR(0-10) DRTAR

110 AR PC PCTAR

111 M[AR] DR WRITE

F2 Microoperation Symbol

000 None NOP

001 AC AC - DR SUB

010 AC AC DR OR

011 AC AC DR AND

100 DR M[AR] READ

101 DR AC ACTDR

110 DR DR + 1 INCDR

111 DR(0-10) PC PCTDR

F3 Microoperation Symbol

000 None NOP

001 AC AC DR XOR

010 AC AC’ COM

011 AC shl AC SHL

100 AC shr AC SHR

101 PC PC + 1 INCPC

110 PC AR ARTPC

111 Reserved

DRTAR

PCTAR

READ, INCPC

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

13

CD Condition Symbol Comments

00 Always = 1 U Unconditional branch

01 DR(15) I Indirect address bit

10 AC(15) S Sign bit of AC

11 AC = 0 Z Zero value in AC

BR Symbol Function

00 JMP CAR AD if condition = 1

CAR CAR + 1 if condition = 0

01 CALL CAR AD, SBR CAR + 1 if condition = 1

CAR CAR + 1 if condition = 0

10 RET CAR SBR (Return from subroutine)

11 MAP CAR(2-5) DR(11-14), CAR(0,1,6) 0

15

Microprogram sequencer in generating next address for control memory?

MICROPROGRAM PROGRAMMED CONTROL

3

3 2 1 0

S1 MUX1

External
(MAP)

SBR
Load

Incrementer

CAR

Input
logic

I

0

T

MUX2

Select

1
I
S
Z

Test

Clock

Control memory

Microops CD BR AD

L

I

1 S0

.

00 0. CAR+1

01 1. CARAD

10 2. CARSBR

11 3. MAPPING

CAR(2-5)=OPCODE

S1S0

MICRO PROGRAM EXAMPLE

16

• Microprogrammed Control Unit :
Microprogrammed Control Unit produces control signals by using micro-
instructions.

• Micro program :

• A program is a set of instructions. An instruction requires a set of micro-
operations.

• Micro-operations are performed using control signals.Here, these control
signals are generated using micro-instructions.This means every
instruction requires a set of micro-instructions

• A set of micro-instructions are called micro-program.

• Microprograms for all instructions are stored in a small memory called
control memory.
The control memory is present inside the processor.

4

• Consider an instruction that is fetched from the main
memory into the instruction Register (IR). The
processor uses its unique opcode to identify the
address of the first micro-instruction. That address is
loaded into CMAR (Control Memory Address
Register). This address is decoded to decide the
corresponding memory instruction from the control
Memory.

• Micro-instructions will only have a control field. The
control field Indicates the control signals to be
generated. Most micro-instructions will not have an
address field. Usually PC will simply get incremented
after every micro-instruction.

5

17

• This is as long as the micro-program is executing
sequentially. If there is a branch micro-instruction
only then there will be an address filed.

• If the branch is unconditional, the branch address
will be directly loaded into CMAR. For conditional
branches, the branch condition will check the
appropriate flag.

• This is done using a MUX which has all flag inputs. If
the condition is true, then the mux will inform CMAR
to load the branch address.

• If the condition is false CMAR will simply get
incremented. The control memory is usually
implemented using flash ROM as it is non-volatile.

6

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

7

CD Condition Symbol Comments

00 Always = 1 U Unconditional branch

01 DR(15) I Indirect address bit

10 AC(15) S Sign bit of AC

11 AC = 0 Z Zero value in AC

BR Symbol Function

00 JMP CAR AD if condition = 1

CAR CAR + 1 if condition = 0

01 CALL CAR AD, SBR CAR + 1 if condition = 1

CAR CAR + 1 if condition = 0

10 RET CAR SBR (Return from subroutine)

11 MAP CAR(2-5) DR(11-14), CAR(0,1,6) 0

0XXXX00
0001000

18

ADDRESS SEQUENCING

5

Instruction code

Mapping
logic

Multiplexers

Control memory (ROM)

Subroutine
register
(SBR)

Branch
logic

Status
bits

Microoperations

Control address register
(CAR)

Incrementer

MUX

select

select a status

bit

Branch address

1

2
3 4

• Incrementing of the control address register An initial
address is loaded into the control address register when
power is turned on in the computer (CAR=100)

• This address is usually the address of the first

• microinstruction that activates the instruction fetch
routine.

• At the end of the fetch routine, the content of the CAR is
incremented to fetch the next instruction in sequence.

• Incrementor increments the content of CAR by
1(CAR=101) . This is loaded in to CAR through the
multiplexer.

6

19

Unconditional branch or conditional branch,
depending on status bit conditions.

• Without checking the any condition we are
transferring the program control from one
location to another location. That branch address
is specified within the instruction.

• Example: Branch Address is 105 specified in the
instruction.

7

conditional branch, depending on status bit
conditions

• In this operation we need to check the condition
(Zero flag, Sign Flag, Carry Flag)of Branch Logic (BL)

• If BL= 1 :we need to go to that particular location

• If BL= 0: simply move forward and increment the
CAR.

8

• Conversion from 4 bit opcode into 7 bit
address in control memory where the data is
located is referred to as a mapping process.

• A mapping procedure is a rule that transforms
the instruction code into a control memory
address.

9

A mapping process from the bits of the
instruction to an address for control
memory.

20

MAPPING OF INSTRUCTIONS TO MICROROUTINES

10

Mapping function implemented by ROM or PLA

OP-code

Mapping memory
(ROM or PLA)

Control address register

Control Memory

Mapping from the OP-code of an instruction to the
address of the Microinstruction which is the starting
microinstruction of its execution microprogram

1 0 1 1 Address
OP-code

Mapping bits

Microinstruction
address

0 x x x x 0 0

0 1 0 1 1 0 0

Machine
Instruction

A facility for Subroutine Call and Return.

11

Subroutine call is a simple

program or functions.

Which performs particular

task.

After completing that

task the control return back

to calling function. This return
address is loaded in the

SBR(Sub Routine Register)

Here multiplexer (4 x 1) getting from 4 inputs and produces one output. This output

which is the address of the operand is loaded in CAR. Here Car operated by Clock .

21

Registers implement two important functions in the CPU operation are as follows −

 It can support a temporary storage location for data. This supports the directly

implementing programs to have fast access to the data if required.

 It can save the status of the CPU and data about the directly implementing

program

If a CPU includes some registers, therefore a common bus can link these registers. A general

organization of seven CPU registers is displayed in the figure.

The CPU bus system is managed by the control unit. The control unit explicit the data flow through

the ALU by choosing the function of the ALU and components of the system.

Consider R1 ← R2 + R3, the following are the functions implemented within the CPU −

MUX A Selector (SELA) − It can place R2 into bus A.

MUX B Selector (SELB) − It can place R3 into bus B.

ALU Operation Selector (OPR) − It can select the arithmetic addition (ADD).

Decoder Destination Selector (SELD) − It can transfers the result into R1.

The multiplexers of 3-state gates are performed with the buses. The state of 14 binary selection inputs

determines the control word. The 14-bit control word defines a micro-operation.

Addressing modes with numerical example.

Types of Addressing Modes

https://www.tutorialspoint.com/arithmetic-logic-unit-alu

22

1. Implied Mode

2.Immediate Mode

3.RegisterAddressing Mode

4. Register Indirect Mode

5. Direct Addressing Mode

6. Indirect Addressing Mode

7. Relative Addressing Mode

8. Indexed Addressing Mode

9. Base Register Addressing Mode

10. Auto Increment Addressing Mode

11. Auto Decrement Addressing Mode

1. Implied Mode: Address of the operands are specified implicitly in the definition of the

instruction. No need to specify address in the instruction

EX:

– CMA (Complement Accumulator)

– CLA – Clear Accumulator,

– INC – Increment Accumulator

Zero address instructions in stack organization are Implied Mode instruction

 Ex: PUSH A, PUSH B

2. Immediate Mode : The operand itself is specified explicitly in the definition of the

instruction. The operand field contains operand rather than address field. Fast to acquire an

operand.

EX:

• MOV A #10 # indicates that 10 is immediate value

• ADD 23,45

This addressing is used for initializing registers to a constant value

3.Register Addressing Mode : In this mode the operand is specified in the register.The name of the

register is specified In the instruction

Advatages:

• -- Shorter address than the memory address

• -- Saving address field in the instruction

• -- Faster to acquire an operand than the memory addressing

EX:

 MOV A,B

 ADD R1,R2 R1=23 R2=45

23

4. Register Indirect Addressing Mode : Instruction specifies a register which contains the

memory address of the operand

• Ex:

 MOV A, [R0]

R0 contains the address of the operand in memory

go to that address in memory to fetch the data , that data is moved to A.

• When the address in the register is used to access memory, the value in the register is

incremented or decremented by 1 Automatically

 R0 – does nor contain data

R0 contains the address of the data where it is located

5. Direct Address Mode : Instruction specifies the memory address which can be used directly to

the physical memory

EX:

 MOV A , 2000

This instruction copy the data present in the location 2000 and move to register A.

6. Indirect Addressing Mode: The address field of an instruction specifies the address of

a memory location that contains the address of the operand.

EX:

MOV A, [2000]

 let the content of 2000 is 3000

3000 is the address of the operand

In address 3000 we can get the operand

24

7.Relative Addressing Modes: The content of the program counter is added to the address part of

the instruction in order to get the effective address of the operand.

Effective Address= Address of the operand

EA= PC+ Address present in the address part of the instruction.

Let PC contains 825

The address part of the Instruction contains = 24

The instruction at location 825 is read from the memory during fetch phase and program counter

is incremented by 1 so present value in PC=826 then

The address of the operand = 826+24= 850

25

8.Indexed Addressing Mode :In this addressing mode the content of the index register is added to the

address part of the instruction to obtain the address of the operand or Effective Address.

Index Register(IR) Is a special CPU register which contains the index value.

Effective Address=

 Content of the Index Register + Address part of the instruction.

9. Base Register Addressing Mode : In this addressing mode the content of the Base Register is

added to the address part of the instruction to obtain the address of the operand or Effective

Address.

Effective Address = content of the Base Register + Address part of the instruction

10. Auto Increment Addressing Mode

In this addressing mode the Effective Address operand is the content of the register specified in the

instruction. After accessing the operand the content of this register are incremented to the address of

the next location.

EX:

MOV R1 [R0]+

26

11. Auto Decrement Addressing Mode : In this addressing mode the Effective Address operand is

the content of the register specified in the instruction. After accessing the operand the content of

this register are decremented to the address of the next location.

EX:

MOV R1 -[R0]

Instruction formats with suitable example

INSTRUCTION FORMAT
A Program is a Set of instructions that instruction are stored in the memory in particular format, that

format is called instruction format.

This instruction format has 32 bit , 64 bit and 16 bit formats. Here we are using 16 bit format The

bits of the instruction format divided into fields.

• Mode field - specifies the way the operand or the effective address is determined

 I = 0 - Direct Addressing Mode

 I = 1 -- Indirect Addressing Mode

• OP-code field - specifies the operation to be performed Examples of opcodes

 ADD: Adds two values

 SUB: Subtracts two values

 DIV: Divides two values

• Address field - designates memory address(es) or a processor register(s)

The number of address fields in the instruction format depends on the internal organization

of CPU

• Three-address Instructions

• Two-address Instructions

• One-address Instructions

• Zero-address Instructions

Example = (A + B) * (C + D)

27

THREE ADDRESS INSTRUCTIONS

• Advantages:

• - Results in short programs
• Disadvantages:
• - Instruction becomes long(many bits) to specify

three addresses
• Program to evaluate X = (A + B) * (C + D)

1

OPCODE ADDRESS FIELD1 ADD F2 ADD F 3

• Program to evaluate X = (A + B) * (C + D) :

• - Computers with two-address instructions
are most common

1

OPCODE ADDRESS
FIELD1 ADD F2

TWO ADDRESS INSTRUCTIONS

28

ONE-ADDRESS INSTRUCTIONS
• One-Address Instructions
• - Use an implied AC register for all data manipulation
• - Program to evaluate X = (A + B) * (C + D) :

7

OPCODE ADDRESS FIELD1

Zero-Address Instructions

• - Can be found in a stack-organized computer
• - Program to evaluate X = (A + B) * (C + D) :

8

OPCODE

29

Data transfer, data manipulation and program control instructions.

COMPUTER INSTRUCTIONS
• Basic computer instructions are commands given

to a computer to perform specific tasks. These
instructions are typically divided into three
categories:

• Data Transfer Instructions: Move data between
memory and registers (e.g., Load, Store).

• Data Manipulation Instructions : Perform math or
logic operations (e.g., Add, Subtract, AND, OR).

• Control Instructions: Guide the flow of the
program (e.g., Jump, Branch, Call).

1

3

NAME MNEMONICS DESCRIPTION

Load: LD Copies data from memory to a register

Store: ST Transfers data from a register to memory.

Move MOV Transfers data from one register to another.

Exchan
ge

XCH Exchange the data from one location to
another

Input IN Provide data to a computer program or
system. I

Output OUT Moves data from a memory address to an I/O
port

Push PUSH Saves data to a stack in memory

Pop POP Retrieves data from a stack, or restores the
status of an instruction

30

4

5

DATA MANIPULATION INSTRUCTIONS

These instructions modify data to execute
program

They are broadly categorized into three types:
–Arithmetic instructions
– Logical and bit manipulation instructions
– Shift instructions

31

DATA MANIPULATION INSTRUCTIONS

6

Program Control Instructions are the machine code instructions which are used to

control the flow of execution of instructions in the processor domain. These are

important in instilling on the processor how to execute a certain task, access different

programs and control the decision making on the basis of some conditions. They are

commonly used in assembly language and generated by high level language which is

compiled into machine code form to enable the processor act in the desired manner.

Types of Program Control Instructions

1. Compare Instruction
Compare instruction is specifically provided, which is similar to a subtract instruction

except the result is not stored anywhere, but flags are set according to the result.

Example: CMP R1, R2 ;

2. Unconditional Branch Instruction
It causes an unconditional change of execution sequence to a new location.

Example: JUMP L2 Mov R3, R1 goto L2

3. Conditional Branch Instruction
A conditional branch instruction is used to examine the values stored in the condition

code register to determine whether the specific condition exists and to branch if it

does.

Example: Assembly Code :

BE R1, R2, L1 Compiler allocates R1 for x and R2 for y

https://www.geeksforgeeks.org/what-is-assembly-language/

32

High Level Code: if (x==y) goto L1;

4. Subroutines
A subroutine is a program fragment that lives in user space, performs a well-defined

task. It is invoked by another user program and returns control to the calling program

when finished.

Example: CALL and RET

5. Halting Instructions
 NOP Instruction - NOP is no operation. It cause no change in the processor state

other than an advancement of the program counter. It can be used to synchronize

timing.

 HALT - It brings the processor to an orderly halt, remaining in an idle state until

restarted by interrupt, trace, reset or external action.

6. Interrupt Instructions
Interrupt is a mechanism by which an I/O or an instruction can suspend the normal

execution of processor and get itself serviced.

 RESET - It reset the processor. This may include any or all setting registers to an

initial value or setting program counter to standard starting location.

 TRAP - It is non-maskable edge and level triggered interrupt. TRAP has the highest

priority and vectored interrupt.

 INTR - It is level triggered and maskable interrupt. It has the lowest priority. It can

be disabled by resetting the processor.

Advantages of Program Control Instructions
 Efficient Control Flow: Program Control Instructions provide the processor with

the means to decide the order of instructions. This means that branching can be

efficiently made which is important for complicated

33

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation,

Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms,

Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic

unit, Decimal Arithmetic operations

Data Representation:

• Data Representation refers to the form in which data is stored, processed, and

transmitted.

• In computer organization, data refers to the symbols that are used to represent

events, people, things and ideas.

Data can be anything like a number, a name, notes in a musical composition, or the

color in a photograph. Data representation can be referred to as the form in which we

stored the data, processed it and transmitted it. In order to store the data in digital

format, we can use any device like computers, smartp hones, and iPads. Electronic

circuitry is used to handle the stored data.

The Number Systems used in computers are

• Binary number system

• Octal number system

• Decimal number system

• Hexadecimal number system

• Binary Coded decimal number system(BCD)

34

Binary number system

• It has only two digits '0' and '1' so its base is 2. Each digit is called a bit.

• A group of four bits (1101) is called a nibble a

• Group of eight bits (11001010) is called a byte. The position of each digit in a

binary number represents a specific power of the base (2) of the number

system.

Decimal

Number

Binary

Number

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

35

Octal number system

• It has eight digits (0, 1, 2, 3, 4, 5, 6, 7) so its base is 8. Each digit in an octal

number represents a specific power of its base (8). The three binary digits can

be represented with a single octal digit.

Decimal Number Octal Number

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 10

9 11

10 12

11 13

12 14

36

Decimal number system

• This number system has ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) so its base is 10.

• In this number system, the maximum value of a digit is 9 and the minimum

value of a digit is 0.

• The position of each digit in decimal number represents a specific power of

the base (10) of the number system. This number system is widely used in our

day to day life.

• It can represent any numeric value.

Hexadecimal number system:

• This number system has 16 digits that ranges from 0 to 9 and A to F. So, its

base is 16.

• The A to F alphabets represent 10 to 15 decimal numbers.

• The position of each digit in a hexadecimal number represents a specific power

of base (16) of the number system.

• It is also known as alphanumeric number system as it uses both numeric digits

and alphabets

Decimal Number Hexa Decimal Number

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

37

8 8

9 9

10 A

11 B

12 C

Binary Coded Decimal Number.:

BCD stands for Binary Coded Decimal Number. In BCD code, each digit of the

decimal number is represented as its equivalent binary number. So, the LSB and

MSB of the decimal numbers are represented as its binary numbers.

38

NUMBER REPRESENTATION:

UNSIGNED INTEGERS

These are binary numbers that are always assumed to be positive.Here all available

bits of the number are used to represent the magnitude of the number.No bits are used

to indicate itssign, hence they are called unsigned numbers.

E.g.: Roll Numbers, Memory addresses etc

SIGNED INTEGERS

These are binary numbers that can be either positive or negative. The MSB of the

number indicates whether it is positive or negative. If MSB is 0 then the number is

Positive. If MSB is 1 then the number is Negative. Negative numbers are always

stored in 2’s complement form.

Three systems are used forrepresenting such numbers:

• Signed magnitude

• 1’s-complement

• 2’s-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative

numbers.Positive values have identical representations in all systems, but negative

values have different representations.

UNSIGNED

NUMBERS

(ONLY POSITIVE)

REAL WORLD

(DECIMAL SYSTEM)

FLOATING POINT

NUMBERS

SIGNED NUMBERS

(BOTH POSTIVE AND

NEGATIVE

INSIDE COMPUTER SYSTEM

STORED IN BINARY

(HEX FORMAT)

Integers

NUMBERS

39

In the signed magnitude system, negative values are represented by changing the

mostsignificant bit from 0 to 1.For example, +5 is represented by 0101, and −5 is

represented by 1101.

In 1’s-complement representation, negative values are obtained by complementing

eachbit of the corresponding positive number. Thus, the representation for −3 is

obtainedby complementing each bit in the vector 0011 to yield 1100.The same

operation, bitcomplementing, is done to convert a negative number to the

corresponding positive value.

Fig: Binary signed number Representations

Two’s complement gives a unique representation for zero.Any other system gives

a separate representation for +0 and for -0. This is absurd. In two’s complement

system, -(x) is stored as two’s complement of (x). Applying the same rule for 0, -(0)

should be stored as two’s complement of 0. 0 is stored as 000. So –(0) should be

stored as two’s complement of 000, which again is 000. Hence two’s complement

gives a unique representation for 0.It produces an additional number on the

negative side. As two’s complement system produces a unique combination for 0, it

has a spare combination ‘1000’ in the above case, and can be used to represent –(8).

40

Fixed and Floating point Representations:

There are two major approaches to store real numbers (i.e., numbers withfractional

component) in modern computing. These are

(i) Fixed Point Notation and

(ii) Floating Point Notation.

Fixed Point Notation:In fixed point notation, there are a fixed number of digits

after the decimal point, whereas floating point number allows for avarying number

of digits after the decimal point.

This representation has fixed number of bits for integer part and for fractional part.

For example, if given fixed-point representation is IIII.FFFF, then you can store

minimum value is 0000.0001 and maximum value is 9999.9999. There are three parts

of a fixed-point number representation: the sign field, integer field, and fractional

field.

Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for the

integer part and 16 bits for the fractional part. Then, -43.625 is represented as

following:

Where, 0 is used to represent + and 1 is used to represent -. 000000000101011 is 15-

bit binary value for decimal 43 and 1010000000000000 is 16-bit binary value for

fractional 0.625.

41

The advantage of using a fixed-point representation is performance and disadvantage

is relatively limited range of values that they can represent. So, it is usually

inadequate for numerical analysis as it does not allow enough numbers and accuracy.

A number whose representation exceeds 32 bits would have to be stored inexactly.

Floating Point Representation:

In some numbers, which have a fractional part, the position of the decimal point is

not fixed as the number of bits before (or after) the decimal point may vary. Eg:

0010.01001, 0.0001101, -1001001.01 etc. the position of the decimal point is not

fixed, instead it"floats" in the number.Such numbers are called Floating Point

Numbers. Floating Point Numbers are stored in a "Normalized" form.

NORMALIZATION OF A FLOATING POINTNUMBER:

Normalization is the process of shifting the point, left or right, so that there is only

one non-zero digit to the left of the point.

01010.01 (-1)0 x 1.01001 x 23

11111.01 (-1)0 x 1.111101 x 24

-10.01 (-1)1 x 1.001 x 21

A normalized form of a number is:

-1s x1.MX2E

Where: S = Sign, M = Mantissa and E = Exponent.

As Normalized numbers are of the 1.M format, the "1" is not actually stored, it is

instead assumed. Also the Exponent is stored in the biased form by adding an

appropriate bias value to it so that -ve exponents can be easily represented.

Advantages of Normalization.

1. Storing all numbers in a standard for makes calculations easier and faster.

2. By not storing the 1 (of 1.M format) for a number, considerable storage space is

saved.

3. The exponent is biased so there is no need for storing its sign bit (as the biased

exponent cannot be -ve).

SHORT REAL FORMAT / SINGLE PRECISION FORMAT / IEEE 754: 32

BIT FORMAT:

42

1. 32 bits are used to store the number.

2. 23 bits are used for the Mantissa.

3. 8 bits are used for the Biased Exponent.

4. 1 bit used for the Sign of the number.

5. The Bias value is (127)10.

Range:

LONG REAL FORMAT / DOUBLE PRECISION FORMAT / IEEE 754: 64

BIT FORMAT

1. 64 bits are used to store the number.

2. 52 bits are used for the Mantissa.

3. 11 bits are used for the Biased Exponent.

4. 1 bit used for the Sign of the number.

5. The Bias value is (1023)10.

6. The range is +10-308 to +10308approximately.

s Biased Exponent Mantissa

1 bit 11-bits (Bias

value:1023)

52-bits

Extreme cases of floating point numbers:

Floating point numbers are represented in IEEE formats.Consider IEEE 754

32-bit format also called Single Precision format or Short real format.

Overflow:

For a value, 1.0 the normalized form will be

(-1)0 x 1.0 x 20

Herethe True Exponent is 0.

43

This is because the 8-bit biased exponent cannot hold a value more than 255.Hence,

all cases where the TE = 128 or more, the BE will be represented as 1111 1111.This

indicates as exception (error) called OVERFLOW. The number is called NaN (Not

a Number).It is identified by Exponent being all 1s (1111 1111).Here, the Mantissa

can be anything!The Extreme case of NaN is Infinity.It is also an OVERFLOW and

hence the Exponent will be 1111 1111.To differentiate Infinity from NaN, the

Mantissa in infinity is 0000 0000.Hence Infinity is identified as Exponent all 1s

and Mantissa all 0s.

Suppose the number is 0.1.It will be normalized as

(-1)0 x 1.0 x 2-1

The true exponent here is -1.

Underflow: All cases where the TE = -127 or less, the BE will be represented

as 0000 0000.This indicates as exception (error) called UNDERFLOW.

The number is called De-Normal Number.It is identified by Exponent being all

0s (0000 0000).Here, the Mantissa can be anything.The Extreme case of De-

Normal Number is Zero.

It is also an UNDERFLOW and hence the Exponent will be 0000 0000.To

differentiate Zero from De-Normal Number, the Mantissa in Zero is 0000

0000.Hence Zero is identified as Exponent all 0s and Mantissa all 0s.This

means Zero is represented as all 0s.

Example:Convert 2A3BH into Short Real format.

Soln: Converting the number into binary we get:

0010 1010 0011 1011

Normalizing the number we get:

(-1)0x 1.0101000111011 x 213

Here S = 0; M = 0101000111011; True Exponent = 13.

Bias value for Short Real format is 127:

Biased Exponent (BE) = True Exponent + Bias

= 13 + 127

= 140.

Converting the Biased exponent into binary we get:

Biased Exponent (BE) = (1000 1100)

44

Representing in the required format we get:

0 10001100 010100011101100…

S Biased Exp Mantissa

(1) (8) (23)

Computer Arithmetic

Integer Addition:

Addition of Unsigned Integers:Addition of 1-bit numbers is illustrated

below.The sum of 1 and 1 is the 2-bit vector 10, which represents the value 2.

We say that the sum is 0 and the carry-out is 1. In order to add multiple-bit

numbers,We add bit pairs starting from the low-order (right)

end of the bit vectors, propagating carries toward the high-order (left) end. The

carry-out from a bit pair becomes the carry-in to the next bit pair to the left.

The carry-in must be added to a bit pair in generating the sum and carry-out at

that position. For example, if both bits of a pair are 1 and the carry-in is 1, then

the sum is 1 and the carry-out is 1, which represents the value 3.

Fig: Addition of 1-bit Numbers

Addition and Subtraction of Signed Integers:

To add two numbers, add their n-bit representations, ignoring the carry-out bit

fromthe most significant bit (MSB) position. The sum will be the algebraically

correct value in2’s-complement representation if the actual result is in the

range−(2n−1) through+2n−1– 1.

To subtract two numbers X and Y, that is, to perform X − Y , form the 2’s-

complement of Y , then add it to X using the add rule. Again, the result will be the

45

algebraically correct value in 2’s-complement representation if the actual result is in

the range −(2n−1) through+2n−1.

X-Y = X+(-Y) = X+(2’S Complement of Y)

Example: To perform 7-3 using 2’s complement addition

If we ignore the carry-out from the fourth bit position in this addition, we obtain the

correct answer.

Few more examples:

Sign Extension: We often need to represent a value given in a certain number of bits

by using a larger number of bits. For a positive number, this is achieved by adding 0s

to the left. For a negative number in 2’s-complement representation, the leftmost bit,

which indicates the sign of the number, is a 1. A longer number with the same value

is obtained by replicating the sign bit to the left as many times as needed.

Overflow in Integer Arithmetic: Using 2’s-complement representation, n bits can

represent values in the range −(2n−1) through+2n−1.For example, the range of numbers

that can be represented by 4 bits is −8through +7.When the actualresult of an

arithmetic operation isoutside the representable range, an arithmetic overflow has

occurred.

46

Introduction to adder circuits:

ONE BIT ADDITION: FULL ADDER

1) It is a 1-bit adder circuit.

2) It adds two 1-bit inputs Xi & Yi, along with a Carry Input Cin.

3) It produces a sum Zi and a Carry output Cout.

4) As it considers a carry input, it can be used in combination to add large numbers.

5) Hence it is called a Full Adder.

47

Fig: Circuit for Sum

Fig: Circuit for carry

RIPPLE CARRY ADDER (For Multiple bit addition):

1)A Full Adder can add two “1-bit” numbers with a Carry input.

2) It produces a “1-bit” Sum and a Carry output.

3) Combining many of these Full Adders, we can add multiple bits.

4) One such method is called Serial Adder.

5) Here, bits are added one-by-one from Least significant bit(LSB) onwards.

6) The carries are connected in a chain through the full adders. The Carry of each

stage is propagated (Rippled) into the next stage.

7) Hence, these adders are also called Ripple Carry Adders.

Advantage: They are very easy to construct.

Drawback: As addition happens bit-by-bit, they are slow.

8) Number of cycles needed for the addition is equal to the number of bits to be

added.

Inputs:

48

Assume X and Y are two “4-bit” numbers to be added, along with a Carry input CIN.

X = X0 X1 X2 X3 (X0 is the MSB … X3 is the LSB)

Y = Y0 Y1 Y2 Y3 (Y0 is the MSB … Y3 is the LSB)

CIN = Carry Input

Outputs:

Assume Z to be a “4-bit” output, and COUT to be the output Carry

Z = Z0 Z1 Z2 Z3 (Z0 is the MSB … Z3 is the LSB)(Here Z represents the sum)

COUT = Carry Output

Fig:4-bit Ripple Carry Adder

Carry Look ahead Adder(For multiple bit Addition):

1) This is also called as parallel adder. It is used to add multiple bits simultaneously.

2) While adding multiple bits, the main issue is that of the intermediate carries.

3) In Serial Adders, we therefore added the bits one-by-one.

4) This allowed the carry at any stage to propagate to the next stage.

5) But this also made the process very slow.

6) If we “PREDICT” the intermediate carries, then all bits can be added

simultaneously.

7) This is done by the Carry Look Ahead Generator Circuit.

8) Once all carries are determined beforehand, then all bits can be added

simultaneously.

 Advantage: This makes the addition process extremely fast.

 Drawback: Circuit is complex.

Inputs:

Assume X and Y are two “4-bit” numbers to be added, along with a Carry input CIN.

X = X0 X1 X2 X3 (X0 is the MSB … X3 is the LSB); Y = Y0 Y1 Y2 Y3 & CIN =

Carry Input

Outputs:

Assume Z to be a “4-bit” output, and COUT to be the output Carry

Z = Z0 Z1 Z2 Z3 & COUT = Carry Output

49

Fig: Circuit for Carry Look ahead Adder

We can “Predict” (Look Ahead) all the intermediate carries in the followingmanner:

The carry at any stage can be calculated as:

 This implies Ci = Gi + Pi.CIN

We need to predict the Carries: C3, C2, C1 and C0

C3 = G3 + P3CIN (I)

C2 = G2 + P2C3

Substituting the value of C3, we get:

C2 = G2 + P2G3 + P2P3CIN (II)

C1 = G1 + P1C2

Substituting the value of C2, we get:

C1 = G1 + P1G2 + P1P2G3 + P1P2P3CIN (III)

C0 = G0 + P0C1

Substituting the value of C1, we get:

C0 = G0 + P0G1 + P0P1G2 + P0P1P2G3 + P0P1P2P3CIN (IV)

From the above four equations, it is clear that the values of all the four Carries (C3,

C2, C1, C0) can be determined beforehand even without doing the respective

additions. To do this we need the values of all G’s (Xi.Yi) and all P’s (Xi+Yi) and the

original carry input CIN. This is done by the Carry Look Ahead Generator Circuit.

Cycle 1: g1, p1, g2, p2, g3, p3, g0, p0are given to the carry look ahead generator.

50

Cycle 2: Input carries are given to the adders by the carry generator.

Cycle 3: Results are produced.

Total number of cycles required :3

Multiplication:

1) Shift and Add: This method is used to multiply two unsigned numbers. When we

multiply two “N-bit” numbers, the answer is “2 x N” bits. Three registers A, Q and

M, are used for this process. Q contains the Multiplier and M contains the

Multiplicand. A (Accumulator) is initialized with 0. At the end of the operation, the

Result will be stored in (A & Q) combined. The process involves addition and

shifting. That is why it is called shift and add method.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

1) At each step, examine the current multiplier bit starting from the LSB.

2) If the current multiplier bit is “1”, then the Partial-Product is the Multiplicand

itself.

3) If the current multiplier bit is “0”, then the Partial-Product is the Zero.

4) At each step, ADD the Partial-Product to the Accumulator.

5) Now Right-Shift the Result produced so far (A & Q combined).

Repeat steps 1 to 5 for all bits of the multiplier.

The final answer will be in A & Q combined.

Fig: Shift and Add Multiplication

Example: Let us consider 7X6

51

Step C

Carry

A

Accumulator

Q

Multiplier

M

Multiplicand

Explanation

 0 0000 0110 0111 Initial Value

1 0

0

0000

0000

0110

0011

 Current Multiplier bit is

“0” so ADD “0” to

Accumulator and

Right-Shift

2 0

0

0111

0011

0011

1001

 Current Multiplier bit is

“1” so ADD Multiplicand

to Accumulator and

Right-Shift

3 0

0

1010

0101

1001

0100

 Current Multiplier bit is

“1” so ADD Multiplicand

to Accumulator and

Right-Shift

4 0

0

0101

0010

0100

1010

 Current Multiplier bit is

“0” so ADD “0” to

Accumulator and

Right-Shift

2) Booth Multiplier(For signed Multiplication):

Booth’s Algorithm is used to multiply two SIGNED numbers. When we multiply

two “N-bit” numbers, the answer is “2 x N” bits. Three registers A, Q and M, are

used for this process.Q contains the Multiplier and M contains the Multiplicand.A

(Accumulator) is initialized with 0.At the end of the operation, the Result will be

52

stored in (A & Q) combined.The process involves addition, subtraction and

shifting.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

At the beginning, consider an imaginary “0” beyond LSB of Multiplier

1) At each step, examine two adjacent Multiplier bits from Right to Left.

2) If the transition is from “0 to 1” then Subtract M from A and Right-Shift (A &

Q) combined.

3) If the transition is from “1 to 0” then ADD M to A and Right-Shift.

4) If the transition is from “0 to 0” then simply Right-Shift.

5) If the transition is from “1 to 1” then simply Right-Shift.

Repeat steps 1 to 5 for all bits of the multiplier.

The final answer will be in A & Q combined.

Flowchart for Booth’s Algorithm:

Example: -9x10=-90

Multiplicand (M): -9 = 10111 9 = 01001. (Two’s Complement Form)

Multiplier (Q): 10 = 01010. -10 = 10110 (Two’s Complement Form)

53

step A

Accumulator

Q

Multiplier

Q(-1) M

Multiplicand

Initial 00000 01010 0 10111

1) (0 ç 0)

No Add or Sub

Right-Shift

00000

00000

01010

00101

0

0

2) (1 ç 0)

Perform (A - M)

Right-Shift

01001

00100

00101

10010

0

1

3) (0 ç 1)

Perform (A + M)

Right-Shift

11011

11101

10010

11001

1

0

4) (1 ç 0)

Perform (A - M)

Right-Shift

00110

00011

11001

01100

0

1

5) (0 ç 1)

Perform (A + M)

Right-Shift

11010

11101

01100

00110

1

0

Restoring and Non-Restoring Division:

Non Restoring Division:

1) Let Q register hold the divided, M register holds the divisor and A register is 0.

2) On completion of the algorithm, Q will get the quotient and A will get the

remainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) Subtract the divisor from A (perform A - M).

3) If the result is positive then the step is said to be “Successful”. In this case quotient

bit will be “1” and Restoration is NOT Required. The Next Step will also be

Subtraction.

4) If the result is negative then the step is said to be “Unsuccessful”. In this case

quotient bit will be “0”. Here Restoration is NOT Performed. Instead, the next step

will be ADDITION in place of subtraction.

As restoration is not performed, the method is called Non-Restoring Division.

Repeat steps 1 to 4 for all bits of the Dividend.

Example: (7) / (5)

Dividend (Q) = 7

Divisor (M) = 5

Accumulator (A) = 0

7 = 0111 5 = 0101

-7 = 1001-5 = 1011

54

 Accumulator

A(0)

Dividend

 Q(7)

Divisor

 M(5)

Initial Values 0000 0111 0101

Step 1:Left shift

A-M

Unsuccessful(-ve)

Next step: Add

0000

 +1011

1011

111_

 1110

Step 2:Left shift

A+M

Unsuccessful(-ve)

Next step: Add

0111

 +0101

1100

110_

 1100

Step 3:Left shift

A+M

Unsuccessful(-ve)

Next step: Add

 1001

 +0101

1110

100_

 1000

Step 4:Left shift

A+M

successful(+ve)

 1101

 +0101

0010

 000_

 0001

 Remainder:2 Quotient:1

RESTORING DIVISION (For unsigned Numbers)

1) Let Q register hold the divided, M register holds the divisor and A register is 0.

2) On completion of the algorithm, Q will get the quotient and A will get

theremainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) Subtract the divisor from A (perform A - M).

3) If the result is positive then the step is said to be “Successful”.In this case quotient

bit will be “1” and Restoration is NOT Required.

4) If the result is negative then the step is said to be “Unsuccessful”.In this case

quotient bit will be “0”.Here Restoration is performed by adding back the divisor.

Hence the method is called Restoring Division.Repeat steps 1 to 4 for all bits of the

Dividend.

55

Example: (6) / (4)

Dividend (Q) = 6

Divisor (M) = 4

Accumulator (A) = 0

6 = 0110 4 = 0100

-6 = 1010 -4 = 1100

 Accumulator

A(0)

Dividend

 Q(6)

Divisor

 M(4)

Initial Values 0000 0110 0100

Step 1:Left shift

A-M

Unsuccessful(-ve)

Restoration:

0000

 + 1100

1100

 0000

 110_

 1100

Step 2:Left shift

A-M

Unsuccessful(-ve)

Restoration:

 0001

 +1100

1101

 0001

 100_

 1000

Step 3:Left shift

A-M

Unsuccessful(-ve)

Restoration:

 0011

 +1100

1111

 0011

 000_

 0000

Step 3:Left shift

A-M

Successful(+ve)

No Restoration

 0110

 +1100

0010

 000_

 0001

 Remainder(2) Quotient(1)

56

RESTORING DIVISION FOR SIGNED NUMBERS:

1) Let M register hold the divisor, Q register hold the divided.

2) A register should be the signed extension of Q.

3) On completion of the algorithm, Q will get the quotient and A will get the remainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) If Sign of A and M is the same then Subtract the divisor from A (perform A - M),

Else Add M to A

3) After the operation,If Sign of A remains the same or the dividend (in A and Q) becomes

zero,then the step is said to be “Successful”.In this case quotient bit will be “1” and Restoration is

NOT Required.

4) If Sign of A changes, then the step is said to be “Unsuccessful”.In this case quotient bit will be

“0”.Here Restoration is Performed.Hence, the method is called Restoring Division.Repeat steps 1 to

4 for all bits of the Dividend.

Example: (-19) / (7)

19 = 010011 7 = 000111

-19 = 101101 -7 = 111001

 Accumulator

A(Sign Extension)

Dividend

 Q(-19)

Divisor

 M(7)

Initial Values 111111 101101 000111

Step 1: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111111

+ 000111

000110

 111111

01101_

011010

Step 2: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111110

+ 000111

000101

 111110

11010_

110100

Step 3: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111101

+ 000111

000100

 111101

10100_

101000

Step 4: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

 111011

+ 000111

000010

 111011

01000_

010000

Step 5: Left-shift

Sign(A,M) Different: A+M

Sign still same: Successful

Restoration not required

 110110

+ 000111

111101

111101

10000_

100001

Step 6: Left-shift

Sign(A,M) Different: A+M

Sign changes: Unsuccessful

Restore

111011

+ 000111

000010

111011

00001_

000010

 Remainder(-5) Quotient(2)

57

UNIT – IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer,

Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory,

Associate Memory, Cache Memory.

Input-Output Interface is used as a method which helps in transferring of

information between the internal storage devices i.e. memory and the external

peripheral device. A peripheral device is that which provide input and output for the

computer, it is also called Input-Output devices. For Example: A keyboard and

mouse provide Input to the computer are called input devices while a monitor and

printer that provide output to the computer are called output devices. Just like the

external hard-drives, there is also availability of some peripheral devices which are

able to provide both input and output.

Input-Output Interface

In micro-computer base system, the only purpose of peripheral devices is just to

provide special communication links for the interfacing them with the CPU. To

resolve the differences between peripheral devices and CPU, there is a special need

for communication links.

The major differences are as follows:

1. The nature of peripheral devices is electromagnetic and electro-mechanical. The

nature of the CPU is electronic. There is a lot of difference in the mode of

operation of both peripheral devices and CPU.

2. There is also a synchronization mechanism because the data transfer rate of

peripheral devices are slow than CPU.

3. In peripheral devices, data code and formats are differ from the format in the

CPU and memory.

https://www.geeksforgeeks.org/structure-of-input-output-interface/

58

4. The operating mode of peripheral devices are different and each may be

controlled so as not to disturb the operation of other peripheral devices

connected to CPU.

There is a special need of the additional hardware to resolve the differences between

CPU and peripheral devices to supervise and synchronize all input and output

devices.

Functions of Input-Output Interface:

1. It is used to synchronize the operating speed of CPU with respect to input-output

devices.

2. It selects the input-output device which is appropriate for the interpretation of the

input-output signal.

3. It is capable of providing signals like control and timing signals.

4. In this data buffering can be possible through data bus.

5. There are various error detectors.

6. It converts serial data into parallel data and vice-versa.

7. It also convert digital data into analog signal and vice-versa.

Asynchronous data transfer:

Asynchronous data transfer enable computers to send and receive data without

having to wait for a real-time response. With this technique data is conveyed in

discrete units known as packets that may be handled separately. This article will

explain what asynchronous data transfer is, its primary terminologies, advantages

and disadvantages, and some frequently asked questions.

Terminologies used in Asynchronous Data Transfer

 Sender: The machine or gadget that transfers the data.

 Receiver: A device or computer that receives data.

 Packet: A discrete unit of transmitted and received data.

 Buffer: A short-term location for storing incoming or departing data.

Classification of Asynchronous Data Transfer

 Strobe Control Method

 Handshaking Method

59

Strobe Control Method For Data Transfer

Strobe control is a method used in asynchronous data transfer that synchronizes data

flow between two devices. Bits are transmitted one at a time, independently of one

another, and without the aid of a clock signal in asynchronous communication. To

properly receive the data, the receiving equipment needs to be able to synchronize

with the transmitting device.

Strobe control involves sending data along with a different signal known as the

strobe signal. The strobe signal alerts the receiving device that the data is valid and

ready to be read. The receiving device waits for the strobe signal before reading the

data to ensure sure it is synchronized with its clock.

The strobe signal is usually generated by the transmitting device and is sent either

before or after the data. If the strobe signal is sent before the data, it is called a

leading strobe. If it is sent after the data, it is called a trailing strobe.

Handshaking Method for Data Transfer

The strobe method has a limitation in that the initiating source unit cannot confirm

whether the destination unit has received the data placed on the bus. Similarly, the

destination unit cannot verify if the source has placed data on the bus. This issue is

resolved by the handshaking method which introduces a second control signal line

to confirm the transfer between units.

In this method, one control line follows the data flow from the source to the

destination and allow the source to inform the destination whether valid data is on

the bus. The other control line runs in the opposite direction from the destination to

the source and enable the destination to notify the source about its ability to accept

data. The control sequence depends on which unit initiates the transfer as the

process varies based on whether the source or destination is initiating the exchange.

Priority interrupts:

1. Priority interrupts allow for the efficient handling of high-priority tasks that

require immediate attention. This is especially important in real-time systems

where certain tasks must be completed within strict time constraints.

2. They are more efficient than software polling as the processor does not waste

time constantly checking for events that have not occurred.

3. Priority interrupts are also more deterministic, as the response time to an event

can be accurately predicted based on its priority level.

Disadvantages:

1. One potential disadvantage of priority interrupts is the possibility of lower

priority tasks being starved of resources if high-priority tasks are continuously

https://www.geeksforgeeks.org/difference-between-synchronous-and-asynchronous-transmission/

60

interrupting the processor.

2. If not implemented properly, priority interrupts can lead to priority inversion,

where a low-priority task holds a resource required by a higher-priority task,

causing a delay in the high-priority task's execution.

Memory Hierarchy Design

1. Registers

Registers are small, high-speed memory units located in the CPU. They are used to

store the most frequently used data and instructions. Registers have the fastest

access time and the smallest storage capacity, typically ranging from 16 to 64 bits.

2. Cache Memory

Cache memory is a small, fast memory unit located close to the CPU. It stores

frequently used data and instructions that have been recently accessed from the

main memory. Cache memory is designed to minimize the time it takes to access

data by providing the CPU with quick access to frequently used data.

3. Main Memory

Main memory, also known as RAM (Random Access Memory), is the primary

memory of a computer system. It has a larger storage capacity than cache memory,

but it is slower. Main memory is used to store data and instructions that are

currently in use by the CPU.

Types of Main Memory

 Static RAM: Static RAM stores the binary information in flip flops and

information remains valid until power is supplied. Static RAM has a faster

access time and is used in implementing cache memory.

 Dynamic RAM: It stores the binary information as a charge on the capacitor. It

requires refreshing circuitry to maintain the charge on the capacitors after a few

milliseconds. It contains more memory cells per unit area as compared to

SRAM.

read more about - Different Types of RAM (Random Access Memory)

4. Secondary Storage

Secondary storage, such as hard disk drives (HDD) and solid-state drives (SSD) , is

a non-volatile memory unit that has a larger storage capacity than main memory. It

is used to store data and instructions that are not currently in use by the CPU.

Secondary storage has the slowest access time and is typically the least expensive

type of memory in the memory hierarchy.

5. Magnetic Disk

Magnetic Disks are simply circular plates that are fabricated with either a metal or

a plastic or a magnetized material. The Magnetic disks work at a high speed inside

the computer and these are frequently used.

6. Magnetic Tape

Magnetic Tape is simply a magnetic recording device that is covered with a plastic

film. Magnetic Tape is generally used for the backup of data. In the case of a

https://www.geeksforgeeks.org/different-classes-of-cpu-registers/
https://www.geeksforgeeks.org/cache-memory-in-computer-organization/
https://www.geeksforgeeks.org/random-access-memory-ram/
https://www.geeksforgeeks.org/memory-management-in-operating-system/
https://www.geeksforgeeks.org/difference-between-sram-and-dram/
https://www.geeksforgeeks.org/different-types-ram-random-access-memory/
https://www.geeksforgeeks.org/difference-between-hard-disk-drive-hdd-and-solid-state-drive-ssd/
https://www.geeksforgeeks.org/magnetic-disk-memory/
https://www.geeksforgeeks.org/magnetic-tape-memory/

61

magnetic tape, the access time for a computer is a little slower and therefore, it

requires some amount of time for accessing the strip.

Main Memory :

The main memory is the fundamental storage unit in a computer system. It is

associatively large and quick memory and saves programs and information during

computer operations. The technology that makes the main memory work is based on

semiconductor integrated circuits.

RAM is the main memory. Integrated circuit Random Access Memory (RAM) chips

are applicable in two possible operating modes are as follows ?

 Static ? It consists of internal flip-flops, which store the binary information.

The stored data remains solid considering power is provided to the unit. The

static RAM is simple to use and has smaller read and write cycles.

 Dynamic ? It saves the binary data in the structure of electric charges that are

used to capacitors. The capacitors are made available inside the chip by Metal

Oxide Semiconductor (MOS) transistors. The stored value on the capacitors

contributes to discharge with time and thus, the capacitors should be regularly

recharged through stimulating the dynamic memory.

The Secondary storage media can be fixed or removable. Fixed Storage media is an

internal storage medium like a hard disk that is fixed inside the computer. A

storage medium that is portable and can be taken outside the computer is termed

removable storage media.

Secondary memory is a type of computer memory that is used for long-term storage

of data and programs. It is also known as auxiliary memory or external memory,

and is distinct from primary memory, which is used for short-term storage of data

and instructions that are currently being processed by the CPU.

Secondary memory devices are typically larger and slower than primary memory,

but offer a much larger storage capacity. This makes them ideal for storing large

files such as documents, images, videos, and other multimedia content.

Some examples of secondary memory devices include hard disk drives (HDDs),

solid-state drives (SSDs), magnetic tapes, optical discs such as CDs and DVDs, and

flash memory such as USB drives and memory cards. Each of these devices uses

different technologies to store data, but they all share the common feature of being

non-volatile, meaning that they can store data even when the computer is turned

off.

62

Secondary memory devices are accessed by the CPU via input/output (I/O)

operations, which involve transferring data between the device and primary

memory. The speed of these operations is affected by factors such as the type of

device, the size of the file being accessed, and the type of connection between the

device and the computer.

ASSOCIATIVE MEMORY:

Associative memory is also known as content addressable memory (CAM) or

associative storage or associative array. It is a special type of memory that is

optimized for performing searches through data, as opposed to providing a simple

direct access to the data based on the address.

It can store the set of patterns as memories when the associative memory is being

presented with a key pattern, it responds by producing one of the stored pattern

which closely resembles or relates to the key pattern.

It can be viewed as data correlation here. input data is correlated with that of

stored data in the CAM.

It forms of two type:

1. auto associative memory network : An auto-associative memory network,

also known as a recurrent neural network, is a type of associative memory

that is used to recall a pattern from partial or degraded inputs. In an auto-

associative network, the output of the network is fed back into the input,

allowing the network to learn and remember the patterns it has been trained

on. This type of memory network is commonly used in applications such as

speech and image recognition, where the input data may be incomplete or

noisy.

2. hetero associative memory network : A hetero-associative memory network

is a type of associative memory that is used to associate one set of patterns

with another. In a hetero-associative network, the input pattern is associated

with a different output pattern, allowing the network to learn and remember

the associations between the two sets of patterns. This type of memory

network is commonly used in applications such as data compression and

data retrieval.

Cache memory is a small, high-speed storage area in a computer. The cache is a

smaller and faster memory that stores copies of the data from frequently used

main memory locations. There are various independent caches in a CPU, which

store instructions and data.

 The most important use of cache memory is that it is used to reduce the

average time to access data from the main memory.

 The concept of cache works because there exists locality of reference (the

same items or nearby items are more likely to be accessed next) in

processes.

By storing this information closer to the CPU, cache memory helps speed up the

overall processing time. Cache memory is much faster than the main memory

https://www.geeksforgeeks.org/auto-associative-neural-networks/
https://www.geeksforgeeks.org/ann-bidirectional-associative-memory-bam/

63

(RAM). When the CPU needs data, it first checks the cache. If the data is there,

the CPU can access it quickly. If not, it must fetch the data from the slower main

memory.

Characteristics of Cache Memory

 Extremely fast memory type that acts as a buffer between RAM and the

CPU.

 Holds frequently requested data and instructions, ensuring that they are

immediately available to the CPU when needed.

 Costlier than main memory or disk memory but more economical than CPU

registers.

 Used to speed up processing and synchronize with the high-speed CPU.

https://www.geeksforgeeks.org/random-access-memory-ram/

64

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline,

Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor

arbitration, Interprocessor communication and synchronization, Cache Coherence

CISC Characteristics, RISC Characteristics:

RISC is the way to make hardware simpler whereas CISC is the single instruction that handles

multiple work. In this article, we are going to discuss RISC and CISC in detail as well as the

Difference between RISC and CISC, Let's proceed with RISC first.

Reduced Instruction Set Architecture (RISC)

The main idea behind this is to simplify hardware by using an instruction set composed of a few

basic steps for loading, evaluating, and storing operations just like a load command will load data, a

store command will store the data.

Characteristics of RISC

 Simpler instruction, hence simple instruction decoding.

 Instruction comes undersize of one word.

 Instruction takes a single clock cycle to get executed.

 More general-purpose registers.

 Simple Addressing Modes.

 Fewer Data types.

 A pipeline can be achieved.

Advantages of RISC

 Simpler instructions: RISC processors use a smaller set of simple instructions, which

makes them easier to decode and execute quickly. This results in faster processing times.

 Faster execution: Because RISC processors have a simpler instruction set, they can execute

instructions faster than CISC processors.

 Lower power consumption: RISC processors consume less power than CISC processors,

making them ideal for portable devices.

Disadvantages of RISC

 More instructions required: RISC processors require more instructions to perform

complex tasks than CISC processors.

65

 Increased memory usage: RISC processors require more memory to store the additional

instructions needed to perform complex tasks.

 Higher cost: Developing and manufacturing RISC processors can be more expensive than

CISC processors.

Complex Instruction Set Architecture (CISC)

The main idea is that a single instruction will do all loading, evaluating, and storing operations just

like a multiplication command will do stuff like loading data, evaluating, and storing it, hence it's

complex.

Characteristics of CISC

 Complex instruction, hence complex instruction decoding.

 Instructions are larger than one-word size.

 Instruction may take more than a single clock cycle to get executed.

 Less number of general-purpose registers as operations get performed in memory itself.

 Complex Addressing Modes.

 More Data types.

Advantages of CISC

 Reduced code size: CISC processors use complex instructions that can perform multiple

operations, reducing the amount of code needed to perform a task.

 More memory efficient: Because CISC instructions are more complex, they require fewer

instructions to perform complex tasks, which can result in more memory-efficient code.

 Widely used: CISC processors have been in use for a longer time than RISC processors, so

they have a larger user base and more available software.

Disadvantages of CISC

 Slower execution: CISC processors take longer to execute instructions because they have

more complex instructions and need more time to decode them.

 More complex design: CISC processors have more complex instruction sets, which makes

them more difficult to design and manufacture.

 Higher power consumption: CISC processors consume more power than RISC processors

because of their more complex instruction sets.

Basic Concepts of Pipelining: Pipelining is a technique of decomposing a sequential process into

suboperations, with each subprocess being executed in a special dedicated segment that operates

concurrently with all other segments. A pipeline can be visualized as a collection of processing

segments through which binary information flows. Each segment performs partial processing

dictatedbythewaythetaskispartitioned.Theresultobtainedfromthecomputationineachsegment is

transferred to the next segment in the pipeline. The final result is obtained after the data have

passed through all segments. It is characteristic of pipelines that several computations can be in

progress in distinct segments at the same time.

66

The simplest way of viewing the pipeline structure is to imagine that each segment consists of an

input register followed by a combinational circuit. The register holds the data and

thecombinational

circuitperformsthesuboperationintheparticularsegment.Theoutputofthecombinationalcircuit in a

given segment is applied to the input register of the next segment. The pipeline organization

willbedemonstratedbymeansofasimpleexample.Supposethatwewanttoperformthecombined

multiply and add operations with a stream of numbers.

Each suboperation is to be implemented in a segment within a pipeline. Each segment has one or

tworegistersandacombinationalcircuitasshowninFigurebelow.R1throughR5areregistersthat receive

new data with every clock pulse. The multiplier and adder are combinational circuits. The

suboperations performed in each segment of the pipeline are as follows:

The five registers are loaded with new data every clock pulse. The effect of each clock is shown in

Table below. The first clock pulse transfers A1 and B1 into R1 and R2.

67

ThesecondclockpulsetransferstheproductofR1andR2intoR3andC1intoR4.Thesameclock pulse

transfers A2 and B2 into R1 and R2. The third clock pulse operates on all three segments

simultaneously. It places A3 and B3 into R1 and R2, transfers the product of R1 and R2 into R3,

transfersC2 into R4, and places the sum of R3 and R4 into R5. It takes three clock pulses to fill up

thepipeandretrievethefirstoutputfromR5.Fromthe each clock produce same output and moves the

data one step down the pipeline.

The general structure of a four-segment pipeline is illustrated in Figure below. The operands pass

through all four segments in a fixed sequence. Each segment consists of a combinational circuit Si

that performs a sub operation over the data stream flowing through the pipe. The segments are

separated by registers Ri that hold the intermediate results between the stages.

The behavior of a pipeline can be illustrated with a space-time diagram. This is a diagram that

shows the segment utilization as a function of time. The space-time diagram of a four-segment

pipeline is demonstrated in Figure below. The horizontal axis displays the time in clock cycles and

the vertical axis gives the segment number. The diagram shows six tasks T1through T6 executed

in four segments. Initially, task T1 is handled by segment 1. After the first clock, segment 2 is

busy with T1, while segment 1 is busy with task T2. Continuing in this manner, the first task T1 is

completed after the fourth clock cycle. From then on, the pipe completes a task every clock cycle.

No matter how many segments there are in the system, once the pipeline is full, it takes only one

clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time tp is used to execute n

tasks. The first task T1 requires a time equal to ktp to complete its operation since there are k

segments in the pipe. The remaining n - 1 tasks emerge from the pipe at the rate of one task per

clock cycle and they will be completed after a tim eequalto(n-1)tp. Therefore,to complete nt asks

68

Usingak-segmentpipelinerequiresk+(n-

1)clockcycles.Forexample,thediagrambelowshowsfoursegmentsandsixtasks.Thetimerequiredtoco

mpletealltheoperationsis4+(6-1)=9clock cycles, as indicated in the diagram. Next consider a non

pipeline unit that performs the same operation and takes a time equal to tnto complete each task.

The total time required for n tasks is

ntn.Thespeedupofapipelineprocessingoveranequivalentnonpipelinedprocessingisdefinedby the

ratio

As the number of tasks increases n becomes much larger than k-1,and k+n-1approachesthe value of

n. Under this condition, the speedup becomes

Ifweassumethatthetimeittakestoprocessataskisthesameinthepipelineandnon-pipeline circuits, we will

have tn= ktp. Including this assumption, the speedup reduces to

Thisshowsthatthetheoreticalmaximumspeedupthatapipelinecanprovide is k,where ki sthe number

of segments in the pipeline.

Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high-speed computers. They are used to

implement floating-point operations, multiplication of fixed-point numbers, and similar

computations encountered in scientific problems. Consider the following two normalized floating

point numbers

69

A and B are two fractions that represent the mantissas and a and b are the exponents. The floating-

point addition and subtraction can be performed in four segments, as shown in Figure below. The

registerslabelledRareplacedbetweenthesegmentstostoreintermediateresults.Thesuboperations that

are performed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

The following numerical example may clarify the sub operations perform each segment. Consider

two the normalized floating-point numbers:

The two exponents are subtracted inthefirstsegmenttoobtain3-2=1.Thelarger exponent3is chosen as

the exponent to f the result. Then exist segment shifts the mantissa of Y to the right to obtain

This aligns the two mantissa sunder the same exponent. The addition of the two mantissas in

segment 3 produces the sum

The sum is adjusted by normalizing the results it has a fraction with a non zero first digit.

Thisisdonebyshiftingthemantissaoncetotherightandincrementingtheexponentbyoneto obtain the

normalized sum.

Thecomparatorshifter,adder-subtractor,incrementer,anddecrementerinthefloating-point pipeline are

implemented with combinational circuits.

70

InstructionPipeline

Pipeline processing can occur not only in the data stream but in the instruction stream as well. An

instruction pipeline reads consecutive instructions from memory while previous instructions are

being executed in other segments. This causes the instruction fetch and execute phases to overlap

and perform simultaneous operations. One possible problem associated with such a scheme is that

aninstructionmaycauseabranchoutofsequence.Inthatcasethepipelinemustbeemptiedandall the

instructions that have been read from memory after the branch instruction must be discarded.

In the most general case the computer needs to process each instruction with the following

sequence of steps.

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

71

Example: Four-Segment Instruction Pipeline

Figure below shows how the instruction cycle in the CPU can be processed with a four-segment

pipeline. While an instruction is being executed in segment 4, the next instruction in sequence is

busy fetch from memoryinsegment3.Theeffectiveaddressmaybecalculatedin a separate arithmetic

circuit for the third instruction and whenever the memory is available, the fourth and all

subsequent instructions can be fetched and placed in an instruction FIFO. Thus, up to four sub

operations in the instruction cycle can overlap and up to four different instructions can be in

progress of being processed at the same time. Once in a while, an instruction in the sequence may

be a program control type that causes a branch out of normal sequence. In that case the pending

operationsinthelasttwosegmentsarecompletedandallinformationstoredintheinstructionbuffer

isdeleted.Thepipelinethenrestartsfromthenewaddressstoredintheprogramcounter.Similarly, an

interrupt request, when acknowledged, will cause the pipeline to empty and start again from a new

address value.

72

Figure below shows the operation of the instruction pipeline. The time in the horizontal axis

is divided into steps of equal duration. The four segments are represented in the diagram

with an abbreviated symbol.

1. Flisth segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the effective address.

3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

ItisassumedthattheprocessorhasseparateinstructionanddatamemoriessothattheoperationinFla

ndFOcanproceedatthesametime.Intheabsenceofabranchinstruction,each segment operates on

different instructions. Thus, in step 4, instruction 1 is being executed in segment EX; the

operand for instruction 2 is being fetched in segment FO; instruction 3 is being decoded in

segment DA; and instruction 4 is being fetched from memory in segment FI.Assume no

wthat instruction 3 is a branch instruction. As soon as this instruction is decoded in segment

DA in step 4,the transfer from FI to DA of the other instructions is halted until the branch

instruction is executed in step 6. If the branch is taken, anew instruction is fetched In step7.

Ifthebranch is not taken, the instruction fetched previously in step 4 can be used. The

pipeline then continues until a new branch instruction is encountered. Another delay may

occur in the pipeline if theEX segment needs to store the result of the operation in the data

memory while the FO segment needs to fetch an operand. In that case, segment FO must

wait until segment EX has finished its operation.

Throughput: The amount of processing that can be accomplished during a given interval

of time is called throughput.

[Thepurposeofparallelprocessingistospeedupthecomputerprocessingcapabilityandincreaseits

throughput,thatis,theamountofprocessingthatcanbeaccomplishedduringagivenintervalof

time.]

73

Parallel Processors

Introduction to parallel processors:

Parallel processing is a term used to denote a large class of techniques that are used

to provide simultaneous data-processing tasks for the purpose of easing the

computational speed of a computer system. Instead of processing each instruction

sequentially as in a conventional computer, a parallel processing system is able to

perform concurrent data processing to achieve faster execution time.

The purpose of parallel processing is to speed up the computer processing capability

and increase its throughput,that is,the amount of processing that can be

accomplished during a

givenintervaloftime.Theamountofhardwareincreaseswithparallelprocessingandwith

it, the cost of the system increases. However, technological developments have

reduced hardware costs to the point where parallel processing techniques are

economically feasible.

Parallel processing at a higher level of complexity can be achieved by having a

multiplicity of functional units that perform identical or different operations

simultaneously. Parallel

processingisestablishedbydistributingthedataamongthemultiplefunctionalunits.For

Example the arithmetic logic and shift operations can be separated in to three units

and the operands diverted to each unit under the supervision of a control unit.

Figure below shows one possible way of separating the execution unit into eight

functional units operating in parallel. The operands in the registers are applied to one

of the units depending on the operation specified by the instruction associated with

the operands. The operation performed in each functional unit is indicated in each

block of the diagram. The adder and integer multiplier perform the arithmetic

operations with integer numbers.

74

Parallel Processing:

Parallel Processing can be classified in a variety of way. a computer system by the

number of instructions and data items that are manipulated simultaneously. The normal

operation of a computer is to fetch instructions from memory and execute them in the

processor. The sequence of instructions read from memory constitutes an instruction

stream. The operations performed on the data in the processor constitute a data stream.

Parallel processing may occur in the instruction stream, in the data stream, or in both.

Flynn's classification divides computers in to four major groups as follows:

 Single instruction stream, single data stream(SISD)

 Single instruction stream, multiple data stream(SIMD)

 Multiple instruction stream, single data stream(MISD)

 Multiple instruction stream ,multiple data stream(MIMD)

11

1

SISD represents the organization of a single computer containing a control unit, a processor

unit and a memory unit. Instructions are executed sequentially and the system may or maynot

have internal parallel processing capabilities. Parallel processing in this case may be achieved

by means of multiple functional units or by pipeline processing.

SIMD represents an organizationthatincludesmanyprocessingunitsunderthesupervisionof a

common control unit. All processors receive the same instruction from the control unit but

operate on different items of data. The shared memory unit must contain multiple modules so

that it can communicate with all the processors simultaneously.

MISD structure is only of theoretical interest since no practical system has been constructed

using this organization.

MIMD organization refers to a computer system capable of processing several programs at

the same time. Most multiprocessor and multicomputer systems can be classified in this

category.

Concurrent access to memory and cache coherence:

The primary advantage of cache is its ability to reduce the average access time in uni

processors. When the processor finds a word in cache during a read operation, the main

memory is not involved in the transfer. If the operation is to write, there are two commonly

used procedures to update memory.

Write-through policy:In the write-through policy,both cache and main memory are updated

with every write operation.

Write-back policy: In the write-back policy, only the cache is updated and the location is

marked so that it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share a common memory. In

addition, each processor may have a local memory, part or all of which may be a cache. The

compellingreasonforhavingseparatecachesforeachprocessoristoreducetheaverageaccess time

in each processor.The same information may reside in a number of copies in some caches and

main memory.

Toensuretheabilityofthesystemtoexecutememoryoperationscorrectly,the multiple copies must

be kept identical.

This requirement imposes a cache coherence problem. A memory scheme is coherent if the

valuereturnedonaloadinstructionisalwaysthevaluegivenbythelateststoreinstruction with

the same address. Without a proper solution to the cache coherence problem, caching cannot

be used in bus- oriented multiprocessors with two or more processors.

Conditions for Incoherence

Cachecoherenceproblemsexistinmultiprocessorswithprivatecachesbecauseoftheneedto share

writable data. Read-only data can safely be replicated without cache coherence enforcement

mechanisms.

To illustrate the problem,consider the three-processorconfigurationwithprivatecachesshown in

Fig. below. Some time during the operation an element X from main memory is loaded into

thethreeprocessors,P1,P2,andP3.As a consequence,it is also copied into the private caches of

the three processors. For simplicity,we assume that X contains the value of 52.Theloadon X to

the three processors results in consistent copie sin the caches and main memory. If one of

theprocessorsperformsastoretoX,thecopiesofXinthecachesbecomeinconsistent.Aload

12

2

bytheotherprocessorswillnotreturnthelatestvalue.Dependingonthememoryupdatepolicy used in

the cache, the main memory may also be inconsistent with respect to the cache.

A store to X (of the value of 120) into the cache of processor P1 updates memory to the new

value in a write-through policy. A write-through policy maintains consistency between

memory and the originating cache, but the other two caches are inconsistent since they still

hold the old value which is shown in figure below.

In a write-back policy, main memory is not updated at the time of the store. The copies in the

other two caches and main memory are in consistent. Memory is updated eventually when

the modified data in the cache are copied back into memory.

13

3

Another configuration that may cause consistency problems is a direct memory access

(DMA) activityinconjunctionwithanIOPconnectedtothesystembus.Inthecaseofinput,the

DMA may modify locations in main memory that also reside in cache without updating the

cache. During a DMA output, memory locations maybe read before the yareupdated from

the cache when using a write-back policy.

Multiprocessor:

A Multiprocessor is a computer system with two or more central processing units (CPUs)

share full access to a common RAM. The main objective of using a multiprocessor is to boost

the system’s execution speed, with other objectives being fault tolerance and application

matching. There are two types of multiprocessors, one is called shared memory

multiprocessor and another is distributed memory multiprocessor. In shared memory

multiprocessors, all the CPUs shares the common memory but in a distributed memory

multiprocessor, every CPU has its own private memory.

In multiprocessor systems, interconnection structures define how processors,

memory, and I/O devices connect and communicate. Inter-processor arbitration

is the process of managing access to shared resources like buses when multiple

processors need them simultaneously. Inter-processor communication refers to

the methods and mechanisms by which these processors exchange data and

synchronize their operations.

14

4

Interconnection Structures:

These structures dictate the physical and logical connections between

components. Common types include:

 Shared Memory: Processors share a single memory space, allowing for fast

data exchange.

 Distributed Memory: Each processor has its own private memory, requiring

explicit communication for data sharing.

 Bus-based: A common bus connects all components, requiring arbitration for

access.

 Crossbar Switch: Provides dedicated connections between any two

components, allowing for concurrent communication.

Inter-processor Arbitration:

When multiple processors need to access a shared resource, like a bus, a

mechanism is needed to resolve conflicts. This is where inter-processor

arbitration comes in.

 Daisy Chain Arbitration:

A serial approach where a grant signal is passed from one processor to the

next, giving priority to the first in line.

 Centralized/Parallel Arbitration:

Dedicated lines for requesting and granting access, allowing for faster

resolution.

 Dynamic Arbitration:

The priority of processors can change dynamically based on certain

conditions.

Inter-processor Communication:

This involves the methods and protocols by which processors exchange data

and synchronize their actions.

 Shared Memory:

Processors read and write to a shared memory location, allowing for fast

communication. However, it can lead to synchronization issues.

 Message Passing:

https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Distributed+Memory&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIFhAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3
https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Crossbar+Switch&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIFRAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3
https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Daisy+Chain+Arbitration&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIMxAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3
https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Centralized%2FParallel+Arbitration&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQINhAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3
https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Shared+Memory&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIUhAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3
https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Message+Passing&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIThAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3

15

5

Processors send and receive messages through designated channels, providing

a more structured and controlled communication method.

 Semaphores and Mutexes:

Synchronization primitives used to coordinate access to shared resources and

prevent race conditions

Cache coherence :

Cache coherence is a mechanism that ensures data consistency across multiple

caches in a multiprocessing or multicore system. When multiple processors or

cores share data, each might have its own cache. If one processor modifies a

piece of shared data, cache coherence protocols ensure that all other caches

holding that data are updated or invalidated to maintain data consistency. This

prevents situations where different processors have conflicting versions of the

same data, which could lead to incorrect program execution.

https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Semaphores&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIURAB&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3
https://www.google.com/search?cs=0&sca_esv=afbf6cd5309ef765&sxsrf=AE3TifPlZ-1vLVU4r4K9yAW-Q_nbunksrQ%3A1750223279007&q=Mutexes&sa=X&ved=2ahUKEwjYiZ7mmfqNAxXGRmcHHS2tHLgQxccNegQIURAC&mstk=AUtExfCeHzAhkbhrlayTMlklJ1sX-hkWJAdmYYH_OY74XW4zo5x0jEIqf1f0xX5M84S1jvGOq6yCgkJRTm4HneDrGz1XuxCsMwZauKv4J1_lJsKY_0YfSz8cyqMb3lNs6lRcTLUDpUuN23IqAOONcLRvMWmbKKzBvo7-aICIzDlMDXFy_2k&csui=3

	(R24A0561) COMPUTER ORGANIZATION AND ARCHITECTURE
	COURSE OBJECTIVES:
	UNIT – IV
	COURSE OUTCOMES:
	1. Input Unit
	2. Central Processing Unit (CPU) – The Brain of the Computer
	Components of CPU:
	a. Arithmetic Logic Unit (ALU)
	b. Control Unit (CU)
	c. Registers

	3. Memory / Storage Unit
	a. Primary Memory (Main Memory):
	b. Secondary Storage:

	4. Output Unit
	Register Transfer Language (RTL):
	Register Transfer Operations
	Advantages of Register Transfer Language (RTL)
	Fetch Cycle
	Execute Cycle
	AND
	ADD
	LDA
	STA
	BUN
	BSA
	ISZ
	Types of Program Control Instructions
	1. Compare Instruction
	2. Unconditional Branch Instruction
	3. Conditional Branch Instruction
	4. Subroutines
	5. Halting Instructions
	6. Interrupt Instructions

	Advantages of Program Control Instructions
	UNIT – IV
	Functions of Input-Output Interface:

	Terminologies used in Asynchronous Data Transfer
	Classification of Asynchronous Data Transfer
	Strobe Control Method For Data Transfer
	Handshaking Method for Data Transfer
	Priority interrupts:
	1. Registers
	2. Cache Memory
	3. Main Memory
	Types of Main Memory

	4. Secondary Storage
	5. Magnetic Disk
	6. Magnetic Tape

	Characteristics of Cache Memory
	Arithmetic Pipeline

	InstructionPipeline
	Example: Four-Segment Instruction Pipeline
	Parallel Processors

	Concurrent access to memory and cache coherence:

